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Interactions Revisited1'2

The rejection or denial of a true statistical hypothesis and

the nonrejection or acceptance of a false hypotheisis are abstract-

ions with which researchers in the behavioral sciences generally

make only passing acquaintance. While one is taught to express

concern for -- and even to compute probabilities associated with --

Type I and Type II errors as a student attending a first course

in statistics, the same student in the "cruel world" of research

experiences understandable difficulty in deciding when either of

these errors has in fact occurred. As a result, one gradually

learns to live with them. Such should not be the case with Type

IV errors, as introduced by Marascuilo and Levin (1970), since

with practice this kind of error is easily recognized and con-

sequently avoided.

According to the definition of Marascuilo and Levin, a Type

IV error is said to occur whenever a correct statistical test has

been performed, but is then followed by analyses and explanations

which are not related to the statistical test used to decide whether

the hypothesis should or should not have been rejected. More

succinctly, a Type IV error is made whenever a researcher offers

an incorrect interpretation to a correctly rejected statistical

hypothesis. Less succinctly, a Type IV error is identified as

having been committed whenever a researcher concludes, on the basis

of an appropriately performed statistical test, that there is a

reliable source of variability in the data, but then proceeds to
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specify the locus of the effect with an eyeball interpretation of

the data or by employing post hoc multiple comparison procedures

which are not congruent with the hypothesis initially tested, and

which may not even correspond to the underlying model upon which

the statistical test was based.

Type IV Errors in the One-Way Analysis of Variance Model

Perhaps the most commonly encountered Type IV error is the one

committed by a researcher who follows a rejected anlaysis of variance

(ANOVA) hypothesis with a set of overlapping multiple t-tests, each

performed at the same alpha level as chosen for the original F-test.

In this case, the statistical hypothesis H0: pi = p2 p3 pr

has been rejected with the probability of a Type I error set equal to

I
a . If the researcher now examines ealh of the Q si

I(2 -1)
paired

mean comparisons at the same a level as used for the F-test, the total

probability of at least one Type I error in the set of comparisons

is inflated far above the original probability to a maximum value

of aosQa . Should this procedure pronounce statistically sig-

nificant certain pairwise comparisons that would not have been

identified with the "appropriate" post hoc Scheffe' (1953) method,

then a Type IV error would have been made.3

Some researchers may attempt to control the maximum probability

of at least one Type I error in the set of Q pairwise contrasts

(or in the set of any K planned comparisons, i.e., contrasts involving

linear combinations of means, as well as pairwise comparisons) by
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using Bonferroni critical values as described by Miller (1966) or

Dunn (1961) to conduct their post hoc investigations. However, even

these adjustments do not eliminate Type IV errors since they are

not related to the original F-test in a one-to-one manner. Because

the Bonferroni procedures are quite powerful -- especially when

the number of comparisons of interest is relatively small -- they

may detect a greater number of significant differences than would

the Scheffe' method, which corresponds exactly to the classical

F-test.

It is worth mentioning that Type IV errors of this kind may

be avoided simply by bypassing the F-test altogether. In point

of fact, abandoning the F-test might be the optimal strategy for a

researcher to follow if the plan is to examine only a small number

of contrasts, since the F-test could lead to a nonrejection of Ho

while one or more comparisons could be identified as significant

with the more powerful Bonferroni or Dunn method. In such cases,

the relative power of the Scheffe' to the Dunn procedure (defined,

perhaps, in terms of the ratio of the respective critical values)

may be determined prior to data collection, in order to reach a

rational decision concerning the approach to adopt (see Davis, 1969).

It is also worth noting that in the equal sample size model,

employing the Tukey (1953) method of pairwise comparisons following

the rejection of H
0
based on the classical F-test may also produce

Type IV errors, since Tukey's procedure is more likely to identify

pairwise differences as significant than is Scheffe's. The reason
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for this potential discrepancy is that the two procedures are

derived from different underlying distributions. Tukey's more

powerful method is based on the distribution of the studentized

range for which the corresponding test statistic is the ratio of

the weighted (by the square root of the common sample size) max-

imum mean difference to the square root of the mean square within.

ScheffeA's procedure, on the other hand, is based on a different

mathematical model for which the test scatistic is the familiar

ratio of the mean square between to the mean square within in the

one-way ANOVA model. Thus, if a researcher is interested in per-

forming only pairwise contrasts, and if sample sizes are equal, then

the F-test is not the "appropriate" test to perform! In this case,

the researcher should first perform the studentized range test and

if it leads to rejection of Ho, then Tukey's method of pairwise

comparisons should be employed (Dixon and Massey, 1969; Scheffe,

1959). With this strategy, the probability of making a Type IV

error is reduced to zero.

Type IV Errors in Other Models

Cautions regarding the incorrect post hoc analysis of correctly

performed omnibus tests are not confined to traditional ANOVA

designs. Marascuilo (1966) has described simultaneous inference

procedures which are "appropriate" for large-sample tests of the

differences among J independent proportions and among J independent

correlation coefficients. Steel (1961), Dunn (1964), and Marascuilo

and McSweeney (1967) have developed multiple comparison techniques

5
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to accompany the nonparametric rank testa. The essential feature

of such post hoc methods is that they are based on the same

distribution as the test statistic, and therefore will yield

information which is congruent with the test initially performed.

As might be surmised, multivariate ANOVA hypotheses offer the

researcher a Pandora's box of very elegant and sophisticated

Type IV errors (among others) that may result in unwarranted ex-

planations of significant findings. One common error following a

rejected multivariate hypothesis is to perform variable by variable

comparisons (perhaps at a reduced a level, or using post hoc

univariate techniques), or to interpret the significant multivariate

statistic in terms of linear combinations of dependent variables,

as might be suggested from an examination of principal components

or linear discriminant functions. While there may be some corres-

pondence between the decisions made under these analysis procedures

and the "appropriate" Roy-Bose multivariate post hoc method as

described by Morrison (1967), it has been shown by Hummel and Sligo

(in press) that the Type I error probabilities of the multivariate

and univariate procedures are not identical. That is, when mul-

tivariate data are analyzed on a post hoc basis with critical

values determined from univariate procedures, one is liable to

arrive at statistical decisions which are different from those

based on multivariate post hoc techniques. As was mentioned for

the univariate case, if only a small number of comparisons

is of interest, it might be advisable to examine those comparisons
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individually rather than to perform an overall multivariate F-test.

Until now, the discussion of Type IV errors has been basically

from a Type I error point of view. In other words, situations were

described in which the correspondence between the Type I error prob-

ability of the post hoc analyses and that of the test initially

performed was less than perfect. However, another (perhaps more

serious) Type IV error occurs when a researcher defines his post

hoc contrasts in a manner which does not even investigate the

hypothesis he is presumably testing. This kind of error frequently

occurs when it comes to interpreting statistical "interactions" in

contingency tables (Goodman, 1964; Marascuilo, 1966), regression

analyses (Timm, in preparation), and factorial ANOVA designs

(Marascuilo and Levin, 1970).

Marascuilo and Levin point out that a typical strategy following

the detection of a significant interaction in a factorial ANOVA

is to make either pairwise or nested comparisons using the various

cell means of the design. They showed by examples that this pro-

cedure is in no way related to the interaction F-test initially

performed. It was further suggested that this error arises because

many researchers do not have a clear understanding of what con-

stitutes an interaction as it is defined by the mathematical ANOVA

model. As a result, the post hoc procedures and/or verbal discussion

based on the identification of a significant interaction often

are inappropriate. A further clarification of the meaning of a

statistical interaction will be attempted in the sections which follow.
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Mathematical Model for an I by J Factorial Design

Consider a two-way fixed effects ANOVA model with an equal

number of observations per cel1.
4

For I rows and J columns, the

model may be written as:

Yijk "
3
j Yij eijk

where:

Yijk
the value of the k -th observation in the i-th row and

j-th column

= a fixed constant that centers the data
I

i
m the effect of Level i for Factor A where a

i
m 0

i=1

m the effect of Level j for Factor B where S m 0

Yij m the joint effect of Level i and Level j where 1 y44= yi4=0
1=1 ""J jml

eijk
m the error associated with the k-th observation in the

ij-th cell.

The e
ijk

are assumed to be statistically independent, normally

distrfauted, with a mean of zero and a variance equal to a2.

Under this model it is customary to tent for the presence of

row effects, column effects,and interaction effects by means of three

orthogonal tests of hypothesis:
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H
01 al

a
a2 aI °

H022 01 " a2 0,7 °

H03/ Yll
a
Y12

a "' YU a 0

If any of the main effects is signitifant, one may use Scheffe'vs

method to identify possible sources of variance in enactly the

same manner as that used for the one-way ANOVA. However, if chi

interaction test leads to a rejection of H03, slightly different

procedures must be used to locate the significant sources that

account for the rejection of the hypothesis.

As suggested by Marascuilo and Levin (1970), the common prac-

tice of making simple comparisons among the cell means to locate

the sources of a significant interaction is not valid if H03 is

rejected. The procedure is appropriate only if instead of testing

H01,
H
02'

and H
03

as orthogonal hypotheses, one were to test the

composite total cell hypothesis:

H04:
/111

'12 a a
ULT

In this case, the Scheffe' coefficient would be given by:

S V(Ii-4(Ij_1),IJ(n-1) (1 )

where n a number of observations per cell and a = the probability

of a Type I error associated with H04. In this case, a typical

pairwise contrast is defined by:
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= Pij

= (11 + ai + of yij) (p + mio+ 0j,+ Yirjr)

(ai ay.) + (0j - 0j.) + (yij yi,j,)

Note, however, that if this contrast were found to be

significant, it would be impossible to know whether or not the

difference was due to the fact that ai # ai or that Si 0 0j. $

or that yij yi,j or any combination of these. In words,

contrasts of this type lead to a confounding of the model's para-

meters, and the situation is not alleviated simply by testing

H04 instead of H03.

On the basis of this discussion it should not be concluded that

there is no appropriate way to interpret the meaning of a significant

F-ratio for interaction, in terms of some linear combination of

cell means. What the previous discussion is meant to suggest is

that linear contrasts of the form T = pij pi,j, that are typically

defined by researchers to interpret interactions are incorrect in

a Type IV error sense.

Interaction in the 2 by 2 Design

The simplest way to consider the problem and identify valid

interaction contrasts is to reexamine a factorial design with

1=2 and J=2. For this design, the observed grand, row, column,

and cell means may be denoted as shown in Table 1.
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Insert Table 1 about here

With four cells, there are three degrees of freedom available

for the between cell hypothesis H04. While the test of H04 could

be performed, the more usual approach is to take the total sum of

squares between groups and partition it into three orthogonal

components each possessing one degree of freedom and each leading to

an F-test with v
1
= 1 and v

2
= 4(n-1) . Although there is an

unlimited number of ways that could be used to partition the sum

of squares between groups, in factorial designs the partitioning

consists of three very specific orthogonal contrasts. In this case,

the two orthogonal contrasts for the A and B main effects are

respectively given by:

'YA 51. y2. (+1/2)137711 + (+1/2)5.12 + (-1/2)521 + (-1/2)522

tAYB y.l y.2 (+1/2)5'11 + (-1/2)512 + (+1/2)521 + (-1/2)522

A

To generate the third contrast orthogonal to both TA and TB , one

needs only multiply the coefficients pair by pair and use the resulting

products as the coefficients for the third contrast. For the 2 by 2

design, this procedure defines the contrast:

'AB (+1/4)511+
(-1/4)912 + (-1/4)521 + (+110522 .
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It should be noted that the fractional coefficients (within

contrasts) are not essential to the valid use of orthogonal com-

parisons. Rather, it is the ratio of the coefficients to one

another (between contrasts) that must be maintained. If the fractions

are converted to integers, then the complete collection of linear

contrasts may be represented by a contrast matrix as shown in

Table 2, where the rows represent the individual cell means while

Insert Table 2 about here

the columns represent the orthogonal contrasts which constitute

the elements of the factorial ANOVA design.

Since in the 2 by 2 model: al = -a2, 01 = -02 , and

y
11

In -y
12

= -y
21

- y
22 ,

it may be shown that the expected values

of each of the Table 2 contrasts contain only the single parameter

of interest; that is:

A

7E(TA) = E(51. - 37 72.) = E[61. - F..) - (F2. -5...)]
A A

n E(a
1
- a

2
) In a

1
- a

2

E6B) E(F.1 T.2) E[(y.1 T..) (F.2 5.) ]

E61 B2) fq 132
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"vAB) = E(yu. 7'12 321 + 722)

Er 611 71, 7.,) (712 371. 7.2 +

6;21 72. 7.1 + . (722 72. 7.2 +

A A

E((11 "12 721 + Y22) Yll Y12 721 + Y22

so that the contrasts as defined will produce unconfounded estimates

of their respective effects.

Thus, if Hol is true, then TR = 0. In like manner, TB se 0

and TAB m 0 if H02 and H03 are true. This means that in the 2 by 2

factorial design the hypotheses Ho, , H02, and Hos are equivalent

to the hypotheses:

H01: WA 0, H02'
TB = 0, and Hos:

WAB °

so that hypotheses about equal parameter values are identical to

hypotheses about contrasts being equal to zero.

It should be noted that the ANOVA hypotheses Hol, H02, and Hos

written as hypotheses about TA, TB, and TAB involve every cell of

the 2 by 2 design. As will be seen shortly, the inclusion of every

cell (weighted equally) in each contrast is true of all 2K designs.

This is important for a researcher to keep in mind when interpreting

significant effects. In such cases, to account for an effect on

the basis of anything less than the equal contribution of every

cell is to commit a Type IV error.

13
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Interaction in the I by J Design

It should be noted that in the 2 by 2 factorial design there

is only one way to define three orthogonal contrasts that relate

to the main effect for A, the main effect for B, and their inter-

action. Thus, the test that the parameter values are equal is

identical to the test that the corresponding contrast is equal to

zero. As'soon as I or J exceeds 2, this last statement is no

longer true since there is an infinite number of ways to partition

the sum of squares associated with an effect that has three or more

levels. This means that the test of equal parameter values does

not have a simple counterpart in a test stating that a specified

contrast is equal to zero. Instead, the correspondence must be made

by a statement relating all possible contrasts as being equal to

zero. To illustrate this point, consider a 2 by 3 design, as

displayed in Table 3.

Insert Table 3 about here

Since this design consists of six cells, five degrees of freedom

are available for partitioning the between groups sum of squares.

One possible set of five orthogonal contrasts which may be tested

by this factorial design is presented in Table 45. Since I=2, the

Insert Table 4 about here

14
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first column of Table 4 is similar to the first column of Table 2.

Differences among the three levels of Factor B are tested by means

of two contrasts, each representing one degree of freedom. The

contrast in the second column compares Level 1 and Level 2 of Factor

B, while the contrast in the third column compares Level 3 of Factor

B with Levels 1 and 2 combined. The interaction effects are meas-

ured by means of the contrasts defined in the fourth and fifth columns.

The contrast in the fourth column is found by multiplying the

coefficients of the first column by those of the second, producing

a contrast that measures the differential effect of Levels 1 and 2

of Factor B at the two levels of Factor A. Finally, the fifth

column is found by multiplying the coefficients of the first and

third columns. This contrast measures the differential effect of

the combined first two levels and Level 3 of Factor B at the two

levels of Factor A.

Any of the five contrasts which were of interest to the

researcher could be evaluated as planned comparisons in the manner

described in a following section. The important point to note in

this discussion is that the interaction contrasts are defined

by more than two cells of the design (which will be true for all

interaction contrasts), thereby indicating the inappropriateness

of attempts to interpret significant interactions strictly on the

basis of pairwise or nested statistical comparisons of cell means.

Moreover, the expected values of both 'V and 'Y indicateindicate that
1
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they are indeed true interaction contrasts, since:

)
E611) E612) E(721) E(7221

"1

- (11 al "I" f31 + Y11) al 2 + Y12)

a2 f31 + Y21) (Pt Y2 4. (32 Y22)

=
111 - 112 - 121 + 122 and

E(
'VAB

) " E(y11)
E(y12) 2E613)

E(y21) E(y22)

2

2E(723)

+ a1+ 0
1
+ y

11
) + + a1+ 0

2 +112)
2(0 + a

1
S3+ Y

13)

- (U + a2 + 01 + 21) + a
2
+ 0

2
+ y

22
)

+ 2(p + a2 + 03 + y23)

" Yll 112 2113 Y21 122 "I" 2123

which contain only interaction (y) parameters.

Since sets of contrasts different from those of Tapia 4 may

be used to partition the individual suns of squares for the B

factor and the interaction, it follows that the tests of H02:

01 = 02 = 03 gis 0 and Ho
3

:

Yll Y12
n 123 I= 0 are not equiv-

alent the t"" of lir"- 0,
-

and 1103"''' ",
4 111 2

FiXDa.

16
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AxB
711 0 as was the case in the 2 by 2 design. As soon as I or

2

J exceeds two, the statistical hypothesis of equal parameter values

is equivalent to the hypothesis that states that all contrasts

are equal to zero. In this sense, H02 and H03 are equivalent to

the hypotheses H02: All TB = 0 and H03: All TAB = 0. Because

these are the hypotheses that are actually tested in the analysis

of variance, one may always use Scheffe's method following a

rejected overall hypothesis provided that the appropriate type

of contrast has been defined, and that the appropriate Scheffe'

coefficient is selected. Any number of contrasts may be examined

as long as the expected value of the contrast reduces to a contrast

in the yij only.

Thus, if H
03,

the overall test of interaction is performed and

if the hypothesis is rejected, then Scheffe"s method will guarantee

Type I error protection for all contrasts investigated, but only

(a) if they are valid interaction contrasts, and (b) if the Scheffe

coefficient is based on the degrees of freedom associated with

the test of H03. Valid interaction contrasts would include tests

of interaction effects being different from zero (yij = 0), or from

one another (yij = yi,j,), as well as differences between row or

column differences (A
i

= A
j
) as described by Marascuilo and Levin

(1970). In addition, any. contrast in the cell means may be studied,

provided that it is shown to be a contrast involving the yij only.

17
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This discussion suggests that future textbook writers might

well denote analysis of variance F-test hypotheses as AllAll Y 0.

Interactions in 2
K

Factorial Designs

Once the general model of a two-factor design is understood,

it becomes quite easy to extend the discussion of interactions to

more complex designs.

The extension simply involves the addition of more rows and

columns to the contrast matrix. For this extension, consider a

2 by 2 by 2 design, as represented in Table 5. In this case, the

first, second, and third subscripts refer to the levels of Factors

Insert Table 5 about here

A,B, and C respectively. The seven between-group contrast coeff-

icients corresponding to this design are shown in Table 6. Note

that, as before, each of the first-order (two-factor) interaction

...

Insert Table 6 about here

contrast vectors may be generated by obtaining the products of

the constituent factors. Similarly, the A x B x C second -order

interaction is the product of the A,B, and C main effect contrast

vectors.

18
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In examining the coefficients of the A x B x C interaction

more closely, it will be noticed that the first four coefficients

represent the B x C interaction for A1, while the last four

coefficients represent the B x C interaction for A2. The difference

between the B x C interaction at Levels Al and A2 may be written

as follows:

17/

ABC I(
+1)3'111 + ("1)3'112 (".1)37-121 (+1)9122

H4'1)37211 + (-1)3'212 + (-1)3'221 + (+1)72223

(41)3'7111 (-1)7112 (-1)3'121 + (+1)7122 + (-1-211

(+1)1212 (+1)3'221 + (-1)3222

which is recognized as the contrast defined in the last column

of Table 6. It is easy to show that TABc is an unbiased estimate of

TABC 1111 Y112 Y121 + Y122 Y211 + Y212 + Y221 Y222 '

a contrast involving the interaction parameters only.

With one-degree-of-freedom tests, the F-test always corresponds

to the contrast examined and to its post hoc discussion. Should

the three-factor interaction of Table 6 prove to be statistically

significant, then the effect is immediately traceable to the equally

weighted linear contrast defined in the last column, and not to

any isolated cell or cells of the total design. Instead, the
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interpretation must include, every cell of the design because

the test of interaction is identical to the test of H
0

; 'ABC = 0

versus H1: 'ABC 0 0 .

InCREASti2E2intheIb3"1---L111.herierDesigns

When I,J, or K exceeds 2, then the corresponding analysis

of variance hypotheses cannot be stated in terms of a single

contrast. In this case, the hypotheses again relate to all possible

contrasts that could be generated under the model. Thus, for the

three-factor interaction, the classical F-test actually tests the

hypothesis Ho: All interaction contrasts are identically equal

to zero. The alternative hypothesis is given by H1: At least one

interaction contrast is different from zero.

If H
0
is rejected, confidence intervals may be built around

the individual yijk, or around linear combinations of the various

cells that are indeed true interaction contrasts (not simple

comparisons among cell means). Type IV errors are readily avoided

by limiting one's verbal interpretation of the interaction to those

true interaction comparisons for which the Scheffe' post hoc

confidence interval does not include zero.

Interactions as Planned Comparisons

Some researchers have a number of misconceptions concerning

the partitioning of the sum of squares in complex designs. Whereas

most know that they may generate one-degree-of-freedom tests

"within" a main effect that may be tested as planned orthogonal

20
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comparisons, they fail to realize that a partitioning of the

interaction sum of squares is also possible when planned contrasts

(in the form of those in Table 4) are specified. The prevailing

belief is that while main effects may be decomposed into one-

degree-of-freedom contrasts, interactions must be assessed in the

context of multi-degree-of-freedom omnibus F-tests. That this is

not true is illustrated in the following example.

Consider a cross-sectional study consisting of two factors,

Sex (male and female) and Age (6,8,10, and 12 years of age), as

portrayed in Table 7. Further suppose that an investigator has

Insert Table 7 about here

reason to believe that a certain cognitive ability is of such a

nature that in the primary grades there is a large sex difference

in favor of girls, but that the difference diminishes over the

elementary school years. This statement has the flavor of an

interaction hypothesis which could be evaluated on a post hoc

basis (as outlined in the preceding sections) following the re-

jection of the hypothesis of no interaction with a statistical

test based on three degrees of freedom for the numerator.

But reconsider the investigator's hypothesis. On the surface,

it appears that the hypothesis states that the mean profile for

the boys over the four age levels is not parallel to the corres-

ponding profile for the girls. Actually, it is more explicit than

21



21

that. It states that a relatively large initial girl-boy difference

will be observed that will decrease as age increases. If the

investigator's hypothesis is correct, then symbolically:

(P11 P21) (P12 P22) (P13 P23) (P14 P24)

In this case, it is easy to relate the interaction hypothesis

to an interaction test for trend using the coefficients for linear,

quadratic and cubic components. By referring to a standard table

of orthogonal polynomials, as in Hays (1963) or in Kirk (1968),

one may use the same coefficients that test for trend within the

main effects sum of squares to test the trend interaction hypothesis

within the interaction sum of squares. The contrast matrix appropriate

for testing this is presented in Table 8.

Insert Table 8 about here

The first column defines the contrast for comparing the

girls' and boys' overall (across age) performance. The next

three columns constitute three orthogonal contrasts that test

for the main effect of age by means of a trend analysis for linear,

quadratic, and cubic components. (Depending on the researcher's

hypothesis regarding the age main effect, the three trend contrasts

would be tested either individually or collectively.) These

coefficients are read directly from Table VI of Hays (1963). The

last three columns are generated from the first four: Column 5

is found by multiplying the coefficients of Columns 1 and 2 to produce
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the linear Sex by Age interaction contrast, Column 6 is the product

of Columns 1 and 3, while Column 7 is the product of Columns 1 and 4.

These latter two sets of coefficients define the quadratic and the cubic

Sex by Age interaction contrasts respectively.

In this example, the contrast of primary interest is defined

by the coefficients of Column 5. This contrast is given by:

'AYSxA(linear) (-3).711 + (.4)712 + (4-1)-713 + (+3)3714 + (+3)721

+ (+1)522 + (-1)23 + (-3)724

which may be written as:

TSxA(linear) -3(511-721) -1(712-722) +1(713-323) +3(514-24)

which is seen to have the same basic form as that used for the

linear trend for main effects except that the coefficients in this

case are applied to the mean sex difference at each of the four

age levels. In addition, it should be noted that
TSxA(linear)

is

A

a valid interaction contrast. In the mathematical model
' Sx (linear)

is an estimate of:

TSxA(linear) + al + 131 + Yll (12 1 Y21)

-1(11 + al + 132 + Y12 a2 132 Y22)

+1(p + al + 03 + y13 p d2 - 03 - y23)

+3(u + al + 134 + Y14 a2 °Li Y24)

-3(Y11 Y21) -1(Y12 Y22)+1(Y13
Y23) +3 (Y14

Y24)
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which contains only interaction parameters and, thus, is not con-

founded with other effects.

Some hypothetical data and an ANOVA based on them may be found

in Tables 9 and 10. Calculations of the sums of squares for each source

Insert Table 9 about here

Insert Table 10 about here

of variance and for the planned interaction comparison are as follows:

I
,

SSS = Jn 6/1 )

2

i01

= 4(6)[(18.0 15.5)2 + (13.0 - 15.5)2] = 24[(-2.5)2 + (2.5)2]

= 24(12.5) = 300

SSA = In ) (7.j4 - -Y..)
2

= 2(6)(10.0 - 15.5)
2
+ (15.0 - 15.5)

2
+ (17.5 - 15.5)

+ (19.5 - 15.5)
2

]

= 12[(-5.5)
2

+ (_.5)
2
+ (2.0)

2
+ (4.0)

2
]

= 12(50.5) = 606

2

I J

"Sxe n 1 2
i=1 j=1

(yid 37-7.j 37.)

= 6[(14.0 - 18.0 - 10.0 + 15.5)
2
+ (6.0 - 13.0 - 10.0 + 15.5)

2

+ (19.0 - 13.0 - 19.5 + 15.5)
2

]

= 6(13) = 78
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TSxA(linear) -3(511 323) -1(712 522) +16713 523)

+36714 y24)

= -3(144) -1(18-12) +1(20-15) +3(20-19)

= -3(8) -1(6) +1(5) +3(1)

22

2

SSA =
n(T

SxA(linear)
) 2

= 6(484)
J

'SxA( linear)
I

1 ez
(-3)2 +(-3)2 +(-1)2 +...+(+3)2 40

1=1 j=1
iJ

=72.6

Aso A
SSxA(remainder)

SS
T
SxA(quadratic)

+ SS
'SxA( cubic)

= SS = SSA
SxA(linear)

= 78.0-72.6

= 5.4

Clearly, T
SxA(linear)

gets to the heart of the investigator's

query, i.e., whether there exists a decreasing sex difference in

the cognitive ability as a function of increasing age. His question

is evaluated statistically by weighting the four girl-boy differences

by the appropriate coefficients that are related to linear trend.

If the investigator were interested in other characteristics of the

girl-boy differences, the higher order trend components could"be

examined individually.

25
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If the factor, Sex: (males, females} were replaced by a

factor with more than two levels, e.g.,{Social Class: high, middle,

low} , then defining interesting planned orthogonal contrasts might

become a little more difficult. However, if the interaction were

assessed via the omnibus (with 6 df) test that: All
liSxSC O'

and if such a test were statistically significant, then contrasts

could be defined to compare the mean linear high-low, high-middle,

and middle-low differences, using Scheffe's procedure. Note that

the orthogonality restriction on contrasts is relevant only insofar

as partitioning, sums of squares into nonoverlapping pieces for

hypothesis testing on an a priori basis is concerned. However, if

the entire set of contrasts is tested collectively and if such a

test produces a significant F, then Scheffe's method may be applied

to all comparisons -- orthogonal and non-orthogonal alike -- that

strike the investigator's fancy, as long as they represent true

contrasts among the parameters indicated in the initial test.

It is worth mentioning that the hypothesis of mean girl-boy

differences predicts that the differences will decrease as age

increases. This is certainly in the mode of a directional hypothesis

and therefore to achieve maximum statistical power, it should be

analyzed as a directional (one-tailed) alternative. Since the

hypothesis is related to a linear contrast, one may perform the test

by use of the Student t-distribution, by means of the test statistic:
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TSxA(linear) -3(ill-i21)-1671222)+1613i23)+3G14-;24)
t

2 r

L.'SxA(linear)
1E_3)2+(.3)2+(.1)2+(.4)2401)2+04)2+(+3)2+(+3.f

which is simply the square root of the F- -ratio based on the same

contrast. If the investigator's claim is true, then one would expect

that:

(i11-i21) > 612-37.22) 6714-724)

which when weighted by the above coefficients would produce a negative

value of t. Thus, as a one-tailed test, the hypothesis H-:
u TSxA(linear)=

should be rejected if the observed t < t (a), where t (a) is the
2

critical value of t, based on the degrees of freedom associated with

MS
E '

at the a (100) percentile.

Interaction in The 2 by 2 Intuitive ANOVA Design

The basic argument presented in this paper is that interaction

contrasts defined following a significant F-ratio must include more

than two cells of the design and further, must reduce, to a contrast

involving the interaction parameters only. Thus, in all of the

examples presented, the contrasts examined have been defined in

such a way that a linear combination of the cell means was really

estimating some linear combination of the yij. This was also true

for the 2 by 2 design in which it was seen that the only contrast

associated with a significant interaction was given by:
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(4-1711 + (-1).321 (+1)i22

6711 4.3722) (;312 + 321)

It is worth noting that the form of this contrast is independent

of the mathematical ANOVA model and would thereby be encountered under

the intuitive ANOVA model discussed by Marascuilo and Levin (1970).

Marascuilo and Levin suggested that many behavioral scientists

"intuit" a statistical interaction in much the same way that pharm-

acists view the joint cumulative effects of two drugs when taken

together. For example, neither, either, or both of two drugs (A and B)

might be administered to four independent groups of Ss as follows:

Group Drug Treatment

I Placebo

II Drug A

III Drug B

IV Drugs A and B

One may represent the intuitive model by means of the factorial design

in Table 11. A brief inspection of the four drug treatment combinations

Insert Table 11 about here

indicates why interactions are intuitively traced to a single

treatment or cell. In this model, a statistically significant

interaction component is immediately attributed to the responses of

the subjects in Group IV. However, in order to estimate the magnitude

of the interaction, or y, component at least one comparison would

have to be made within the design.

28
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At first glance, it might seem that an estimate of y could be

obtained by comparing the average response of Group IV with the

pooled average of Groups II and III by means of the contrast:

y22
1/26"12 4. -21)

According to the algebra of expected values:

E(;) E(y22) 1/2E(5,12) - 1/2E(y21)
21'

= u +a+13 +y-1/2(u + a) -1/20 + = + 1/2(a + 13)

Hence, it is clear that this contrast does not do the job, since

the interaction effect is partially confounded with the a and 0 effects.

Alternatively, it might be decided not to average the response

of groups II and III, but to evaluate the interaction by means of:

A
CIMINO ..."

7 Y22 (712 + Y21)

which in this case provides an unbiased estimate of:

Unfortunately, this estimate of y is biased, in that it tends

to underestimate the effect of y by the amount 11 . Moreover,

the linear combination considered is not a legitimate contrast

since the sum of the coefficients does not add to zero. However,

it can be modified to form a contrast by considering the sum of

the averages in Groups I and IV as contrasted with the sum of the

averages in Groups II and III. With the contrast:
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7 (711 + 3722) (712 372l)

it is seen that:

E(T) = (11 +14+a+ 0+ y) - (p +a +p+ 0) = y

Clearly, this is the contrast that is appropriate for determining

the magnitude of the interaction effect. It involves all four

cells of the design in exactly the same manner as suggested when

the 2 by 2 ANOVA design was discussed in the earlier sections of

this paper. Thus, it is readily apparent that even though one may

subscribe in principle to the intuitive interaction model, in

practice when it comes to estimating and isolating the interaction

effects. even contrasts among the parameters of the intuitive model

reduce to exactly the same contrasts encountered in the mathematical

ANOVA model.

The meaning of this entire discussion on Type IV errors

manifested by interactions in ANOVA designs should be clear for the

behavioral scientist. Significant interactions examined as either

planned or post hoc comparisons must be evaluated either in terms

of the interaction parameters of the model or in terms of cell means

that define contrasts that reduce to comparisons among the interaction

parameters of the model. If it is seen that the expected value of

a contrast defined in terms of cell means contains any a, 0, or p

of the design, then it is immediately known that the contrast is
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not a valid interaction contrast and should therefore not be

discussed as though it were related to a significant interaction

component. Just as tests of interactions are orthogonal to tests

of main effects, interaction contrasts, are orthogonal to main effect

contrasts and therefore their expected values are independent of

one another. If these principles are kept in mind and if each

interesting interaction contrast is inspected in terms of its

expected value, then Type IV errors in the interaction model should,

like old soldiers, fade away.

31
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Table 1. Two-Factor Design with 1=2 and J=2 in Terms of the

Observed Means.

Factor A Al A
2

B

Mean

B1

B2

yll 3721

312 322

OW.

Y

Y

.1

.2

Mean Y
1. 32. Y

Table 2. Contrast Matrix for Partitioning the Sum of Squares
in a 2 by 2 Factorial Design into Three Orthogonal
Components Related to Main Effect for A, Main Effect
for B, and their Interaction.

Cell
Mean

TA

Contrast

Y
B TAB

yll

312

321

322

1 1 1

1 -1 -1

-1 1 -1

-1 -1 1
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Table 3. Two-Factor Design with J=2 and J=3 in Terms of the
Observed Means

Factor A Al A
2

B

Mean

B1
Yll 321 3.1

B2
712 322

B3
713 Y23 763

Mean
111

Y1 32.

Table 4. Contrast Matrix for Partitioning the Sum of Squares in a
2 by 3 Factorial Design into Five Orthogonal Components
related to Main Effect for A, Main Effect for B, and
their Interactions.

Cell Contrast
Mean T

A
T
B

T
B
2

T
AxB

T
AxB

21

312

y13

321

322

y23

1 1 1 1

41111111111011M.11

1

1 -1 1 -1 1

1 0 -2 0 -2

-1 1 1 -1 -1

-1 -1 1 1 -1

-1 0 -2 0 2
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Table 5. Three-Factor Design with I=2, 3=20 and K=2 in Terms of
the Observed Means

Factor
A

C B1

Al

B2 B
1.

A
2

B2

C1 7Y111 3'7121 3211 3221

C
2 57112 77122 57212 7222

Table 6. Contrast Matrix for Partitioning the Sum of Squares
in a 2 by 2 Factorial Design into Seven Orthogonal
Components Related to Main Effects for A, B, and C
and their Interactions.

Cell
Mean '2A

A
T
B TC

C9ntrast

TAB 'MAC 'BC 'ABC

71.11 1 1 1 1 1 1 1

3112 1 1 -1 1 -1 -1 -1

31121 1 -1 1 -1 1 -1 -1

3122 1 -1 -1 -1 -1 1 1

.3211 -1 1 1 -1 -1 1 -1

7212 1 -1 -1 1 -1 1

'7221 -1 -1 1 1 -1 -1 1

3222 -1 -1 -1 1 1 1 -1
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Table 7. Two-Factor Design of Sex by Age.

Factor Sex
Age

Girls Boys

6 years

8 years

10 years

12 years

321

312

313 323

314 324

Table 8. Contrast Matrix for Table 7 Based on Tests for Linear, Quadratic,
and Cubic Trends.

Cell Contrast
Mean A A

A A A A A

Y8 'A(linear) 'A(quad.) 'A(cubic) 'SxA(linear) YSxgquad.) 'SxA(cubic)

yll
3712

y14

)21

3722

323

324

1 -3 1 -1 -3 .1 -1

-1 -1 3 -1 -1 3

1 1 -1 -3 1 -1 -3

1 3 1 1 3 1 1

-1 -3 1 -1 3 -1 1

-1 -1 -1 3 1 1 -3

-1 1 -1 -3 -1 1 3

-1 3 1 1 -3 -1 -1
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Table 9. Hypothetical Performance on a Cognitive Task, by Boys
and Girls at Four Age Levels

Factor Sex
Age

Girls Boys Across Sex

6 14 6 10.0

8 18 12 15.0

10 20 15 17.5

12 20 19 19.5

Across Age 18.0 13.0 15.5

Note: There are 6 Ss per cell (n1=6), and the mean square
error (MS

E
) associated with these data is 16.0.

Table 10. Analysis of Variance Table for the Data in Table 9,
including a Planned Interaction Contrast.

Source df SS MS

Sex 1 300 300

Age 3 606 202

Sex by Age 3 78

TSxA(linear)
1 72.6 72.6

A

TSxA(remainder)
2 5.4 2.7

Error 40 640 16.0
.rammme.synowasymnatormaimamormarals......e.wodmmatamaammo

Note: The sums of squares are based on the means in
Table 9, which are proportional to those obtained
with Table 8's coefficients.
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Table 11, The Intuitive 2 by 2 Design

Factor Drug A No Yes

Drug B

No

Yes

vwlsta.M.N.III.ViEW

(Iv)

39
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Footnotes

1
Readers who are still wondering about Type III errors may refer
to assorted definitions reviewed by Marascuilo and Levin (1970).

2
The authors are grateful to Professors Maryellen McSweeney, Neil
H. Timm, and M.I. Charles E. Woodson for reading an initial draft
of this paper, and recommending several helpful modifications.

3
"Appropriate" is used advisedly here, in the sense that the Scheffe'
procedure is the only procedure that corresponds exactly to the
initial test of hypothesis. Whether Scheffe''s procedure is
desirable (with respect to statistical power, for example) is another
issue which has been discussed elsewhere (e.g., Petrinovich and
Hardyck, 1969).

4
Although the discussion and examples throughout this paper will be
based on the assumption of equal cell n's, the same general
principles may be extended to designs with unequal cell frequencies.

Note that evan though the two contrasts for the B factor are orthogonal
in this case, the orthogonality restrictions of a factorial design
apply only to between source (i.e., main effects and interaction)
sets of contrasts. For a more comprehensive treatment of contrasts
and the general linear model, Mendenhall's (1968) book is an
excellent source.
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